Technology, biology turn thought into action

Taking technology to the brain to help paralyzed people reconnect with the world.

Using computers for checking e-mail, drawing images and playing games seem like common tasks for most people. For the severely paralyzed, however, these undertakings can be beyond their reach.

Neurotechnology -- using technology to study the brain -- relies on methods such as CAT (computed axial tomography) scans and deep brain stimulation. In deep brain stimulation, medical devices are placed on the brain in an effort to control brain activity and aid another part of the body.

This use of neurotechnology can stop the tremors of people with Parkinson's disease, while cochlear devices can restore hearing. While these examples of neurotechnology insert information into the brain, other applications of the technology involve extracting information from brain signals via neural interfaces, or a communication link set up between a brain and a device, like a computer. This field holds promise for helping paralyzed people reconnect with the world.

For some people participating in a clinical trial of BrainGate, a neural interface system developed by Cyberkinetics Neurotechnology Systems of Foxborough, Massachusetts, that connection has already occurred.

"Many neurological disorders disrupt the ability to move, but leave cognition intact," said John Donoghue, founder, chief scientific officer and director of Cyberkinetics, during a recent talk on his company's technology at Boston's Museum of Science. "Think spinal cord injuries, something else that cuts the brain off from the body. The signals remain years after the injury."

Converting this cognition into action requires reading brain signals, which communicate messages from the brain to the nerves. Neurons, using electrical impulses, handle the task of sending communications from the brain to the body. These impulses resemble spikes when displayed on a monitor.

"All the information in the brain is based on these spikes putting out information," Donoghue said. "When you think movement, intention goes from the brain to nerves to muscles."

Of course, with paralyzed patients these intentions never develop into an action.

Cyberkinetics' technology decodes these electrical impulses into the corresponding action, with participants performing tasks such as moving a cursor or spelling out words on a monitor, all by thought. Picking up the brain's electrical impulses requires placing microelectrode sensors on the brain's motor cortex, a section of the cerebral cortex that controls motor functions.

The sensor, a square chip the size of a child's aspirin, is placed on the brain via a hole that is drilled into the skull. The sensor, which contains 100 electrodes that are thinner than a human hair and measure 1 millimeter long, is imbedded 1 millimeter into the brain.

"The only way to pick up signals is to place microelectrodes up close to our nerve cells," Donoghue said.

A bundle of gold wires connects the sensor to a pedestal, which protrudes through the scalp. Cables connect the pedestal to a cart containing a computer array, which analyzes the brain data and translates it into a corresponding motion.

When connected to a PC, some patients in BrainGate's clinical trial have been able to check e-mail by thinking about moving a cursor displayed on a monitor, as well as play a video game by thinking about moving an on-screen paddle. Another patient "spoke" for the first time after the person used a word processing program to form sentences.

BrainGate can also be connected to prosthetic devices and other peripherals. One patient opened and closed a prosthetic hand with thought, and picked up and moved objects with the aid of a robotic arm.

Join the PC World newsletter!

Error: Please check your email address.

Struggling for Christmas presents this year? Check out our Christmas Gift Guide for some top tech suggestions and more.

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Fred O'Connor

IDG News Service

Most Popular Reviews

Follow Us

Best Deals on GoodGearGuide

Shopping.com

Latest News Articles

Resources

GGG Evaluation Team

Kathy Cassidy

STYLISTIC Q702

First impression on unpacking the Q702 test unit was the solid feel and clean, minimalist styling.

Anthony Grifoni

STYLISTIC Q572

For work use, Microsoft Word and Excel programs pre-installed on the device are adequate for preparing short documents.

Steph Mundell

LIFEBOOK UH574

The Fujitsu LifeBook UH574 allowed for great mobility without being obnoxiously heavy or clunky. Its twelve hours of battery life did not disappoint.

Andrew Mitsi

STYLISTIC Q702

The screen was particularly good. It is bright and visible from most angles, however heat is an issue, particularly around the Windows button on the front, and on the back where the battery housing is located.

Simon Harriott

STYLISTIC Q702

My first impression after unboxing the Q702 is that it is a nice looking unit. Styling is somewhat minimalist but very effective. The tablet part, once detached, has a nice weight, and no buttons or switches are located in awkward or intrusive positions.

Latest Jobs

Shopping.com

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?