MIT develops method to draw finer features on chips

MIT researchers say denser features can be etched on chips by combining longer wavelengths of light
  • (IDG News Service)
  • — 11 April, 2009 08:39

Researchers at the Massachusetts Institute of Technology say they have made a breakthrough with light technology that could eventually help chip makers create finer circuits.

The researchers have come up with a way to focus a beam of light on a scale far smaller than was previously possible, allowing chip makers to etch even tinier circuits onto their chips, said Rajesh Menon, a research engineer at MIT's department of electrical engineering and computer science.

Chip makers depend on light to draw circuit patterns on chips, but most of the techniques used today cannot produce patterns that are smaller than the wavelength of light itself.

The MIT researchers came up with a way to draw extremely narrow lines by combining beams of light at different wavelengths. They used so-called interference patterns, in which different wavelengths of light sometimes reinforce each other, and in other places cancel each other out.

They say the technique, which is still several years away from commercial use, could allow chip makers to build interconnects and transistors as narrow as a single molecule, or just two to three nanometers.

"If you make your transistors smaller, they typically work faster, you get more functionality," and the cost of manufacturing each chip goes down, Menon said.

Chip manufacturers like Intel and Advanced Micro Devices are consistently building smaller and smaller transistors to get faster performance and use less power. They typically etch chip designs onto a glass material called a photomask, which is then used to replicate the pattern onto silicon wafers.

"What Intel does is pattern replication. You have a pattern and that is replicated" from a photomask straight onto the chips, Menon said. Intel's approach involves using electrons, while MIT's approach involves direct pattern creation via light sources, which it says can be more accurate and provide the flexibility to change designs quickly.

"If you do patterning with electron beams, you will always have to worry about accuracy. Your patterns could get slightly distorted, which could have a big impact on device performance. Photons will go where you tell them to go, whereas electrons won't at the nanoscale," Menon said.

While the researchers managed to produce lines 36 nanometers wide, Menon acknowledged that the technology could hit a wall when it gets down to the atomic scale. "The question then becomes -- can you make the molecule smaller? You're probably limited then," Menon said.

The technology could be commercialized in about five years through an MIT spin-off called Lumarray, according to Menon.

"It's a way's out as we have to solve some material and technical issues," he said.

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Agam Shah

IDG News Service
Topics: MIT
Comments are now closed.

Latest News Articles

Most Popular Articles

Follow Us

GGG Evaluation Team

Kathy Cassidy

STYLISTIC Q702

First impression on unpacking the Q702 test unit was the solid feel and clean, minimalist styling.

Anthony Grifoni

STYLISTIC Q572

For work use, Microsoft Word and Excel programs pre-installed on the device are adequate for preparing short documents.

Steph Mundell

LIFEBOOK UH574

The Fujitsu LifeBook UH574 allowed for great mobility without being obnoxiously heavy or clunky. Its twelve hours of battery life did not disappoint.

Andrew Mitsi

STYLISTIC Q702

The screen was particularly good. It is bright and visible from most angles, however heat is an issue, particularly around the Windows button on the front, and on the back where the battery housing is located.

Simon Harriott

STYLISTIC Q702

My first impression after unboxing the Q702 is that it is a nice looking unit. Styling is somewhat minimalist but very effective. The tablet part, once detached, has a nice weight, and no buttons or switches are located in awkward or intrusive positions.

Resources

Best Deals on GoodGearGuide

Compare & Save

Deals powered by WhistleOut
WhistleOut

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?