Technology, biology turn thought into action

Taking technology to the brain to help paralyzed people reconnect with the world.

Using computers for checking e-mail, drawing images and playing games seem like common tasks for most people. For the severely paralyzed, however, these undertakings can be beyond their reach.

Neurotechnology -- using technology to study the brain -- relies on methods such as CAT (computed axial tomography) scans and deep brain stimulation. In deep brain stimulation, medical devices are placed on the brain in an effort to control brain activity and aid another part of the body.

This use of neurotechnology can stop the tremors of people with Parkinson's disease, while cochlear devices can restore hearing. While these examples of neurotechnology insert information into the brain, other applications of the technology involve extracting information from brain signals via neural interfaces, or a communication link set up between a brain and a device, like a computer. This field holds promise for helping paralyzed people reconnect with the world.

For some people participating in a clinical trial of BrainGate, a neural interface system developed by Cyberkinetics Neurotechnology Systems of Foxborough, Massachusetts, that connection has already occurred.

"Many neurological disorders disrupt the ability to move, but leave cognition intact," said John Donoghue, founder, chief scientific officer and director of Cyberkinetics, during a recent talk on his company's technology at Boston's Museum of Science. "Think spinal cord injuries, something else that cuts the brain off from the body. The signals remain years after the injury."

Converting this cognition into action requires reading brain signals, which communicate messages from the brain to the nerves. Neurons, using electrical impulses, handle the task of sending communications from the brain to the body. These impulses resemble spikes when displayed on a monitor.

"All the information in the brain is based on these spikes putting out information," Donoghue said. "When you think movement, intention goes from the brain to nerves to muscles."

Of course, with paralyzed patients these intentions never develop into an action.

Cyberkinetics' technology decodes these electrical impulses into the corresponding action, with participants performing tasks such as moving a cursor or spelling out words on a monitor, all by thought. Picking up the brain's electrical impulses requires placing microelectrode sensors on the brain's motor cortex, a section of the cerebral cortex that controls motor functions.

The sensor, a square chip the size of a child's aspirin, is placed on the brain via a hole that is drilled into the skull. The sensor, which contains 100 electrodes that are thinner than a human hair and measure 1 millimeter long, is imbedded 1 millimeter into the brain.

"The only way to pick up signals is to place microelectrodes up close to our nerve cells," Donoghue said.

A bundle of gold wires connects the sensor to a pedestal, which protrudes through the scalp. Cables connect the pedestal to a cart containing a computer array, which analyzes the brain data and translates it into a corresponding motion.

When connected to a PC, some patients in BrainGate's clinical trial have been able to check e-mail by thinking about moving a cursor displayed on a monitor, as well as play a video game by thinking about moving an on-screen paddle. Another patient "spoke" for the first time after the person used a word processing program to form sentences.

BrainGate can also be connected to prosthetic devices and other peripherals. One patient opened and closed a prosthetic hand with thought, and picked up and moved objects with the aid of a robotic arm.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Fred O'Connor

IDG News Service
Show Comments

Cool Tech

Bang and Olufsen Beosound Stage - Dolby Atmos Soundbar

Learn more >

Toys for Boys

Nakamichi Delta 100 3-Way Hi Fi Speaker System

Learn more >

Sony WF-1000XM3 Wireless Noise Cancelling Headphones

Learn more >

ASUS ROG, ACRONYM partner for Special Edition Zephyrus G14

Learn more >

Family Friendly

Philips Sonicare Diamond Clean 9000 Toothbrush

Learn more >

Mario Kart Live: Home Circuit for Nintendo Switch

Learn more >

Stocking Stuffer

SunnyBunny Snowflakes 20 LED Solar Powered Fairy String

Learn more >

Teac 7 inch Swivel Screen Portable DVD Player

Learn more >

Christmas Gift Guide

Click for more ›

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Jack Jeffries

MSI GS75

As the Maserati or BMW of laptops, it would fit perfectly in the hands of a professional needing firepower under the hood, sophistication and class on the surface, and gaming prowess (sports mode if you will) in between.

Taylor Carr

MSI PS63

The MSI PS63 is an amazing laptop and I would definitely consider buying one in the future.

Christopher Low

Brother RJ-4230B

This small mobile printer is exactly what I need for invoicing and other jobs such as sending fellow tradesman details or step-by-step instructions that I can easily print off from my phone or the Web.

Featured Content

Product Launch Showcase

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?