Malicious microprocessor opens new doors for attack

Researchers at the University of Illinois at Urbana-Champaign have developed a malicious processor that could grant attackers access to a PC.

For years, hackers have focused on finding bugs in computer software that give them unauthorized access to computer systems, but now there's another way to break in: Hack the microprocessor.

On Tuesday, researchers at the University of Illinois at Urbana-Champaign demonstrated how they altered a computer chip to grant attackers back-door access to a computer. It would take a lot of work to make this attack succeed in the real world, but it would be virtually undetectable.

To launch its attack, the team used a special programmable processor running the Linux operating system. The chip was programmed to inject malicious firmware into the chip's memory, which then allows an attacker to log into the machine as if he were a legitimate user. To reprogram the chip, researchers needed to alter only a tiny fraction of the processor circuits. They changed 1,341 logic gates on a chip that has more than 1 million of these gates in total, said Samuel King, an assistant professor in the university's computer science department.

"This is like the ultimate back door," said King. "There were no software bugs exploited."

King demonstrated the attack on Tuesday at the Usenix Workshop on Large-Scale Exploits and Emergent Threats, a conference for security researchers held in San Francisco.

His team was able to add the back door by reprogramming a small number of the circuits on a LEON processor running the Linux operating system. These programmable chips are based on the same Sparc design that is used in Sun Microsystems' midrange and high-end servers. They are not widely used, but have been deployed in systems used by the International Space Station.

In order to hack into the system, King first sent it a specially crafted network packet that instructed the processor to launch the malicious firmware. Then, using a special login password, King was able to gain access to the Linux system. "From the software's perspective, the packet gets dropped... and yet I have full and complete access to this underlying system that I just compromised," King said.

The researchers are now working on tools that could help detect such a malicious processor, but there's a big problem facing criminals who would try to reproduce this type of attack in the real world. How do you get a malicious CPU onto someone's machine?

This would not be easy, King said, but there are a few possible scenarios. For example, a "mole" developer could add the code while working on the chip's design, or someone at a computer assembly plant could be paid off to install malicious chips instead of legitimate processors. Finally, an attacker could create a counterfeit version of a PC or a router that contained the malicious chip.

"This is not a script kiddie attack," he said. "It's going to require an entity with resources."

Though such a scenario may seem far-fetched, the U.S. Department of Defense (DoD) is taking the issue seriously. In a February 2005 report, the DoD's Defense Science Board warned of the very attack that the University of Illinois researchers have developed, saying that a shift toward offshore integrated circuit manufacturing could present a security problem.

There are already several examples of products that have shipped with malicious software installed. In late 2006, for example, Apple shipped Video iPods" target="_blank">new that contained the RavMonE.exe virus.

"We're seeing examples of the overall supply chain being compromised," King said. "Whether or not people will modify the overall processor designs remains to be seen."

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Robert McMillan

IDG News Service
Show Comments

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Aysha Strobbe

Microsoft Office 365/HP Spectre x360

Microsoft Office continues to make a student’s life that little bit easier by offering reliable, easy to use, time-saving functionality, while continuing to develop new features that further enhance what is already a formidable collection of applications

Michael Hargreaves

Microsoft Office 365/Dell XPS 15 2-in-1

I’d recommend a Dell XPS 15 2-in-1 and the new Windows 10 to anyone who needs to get serious work done (before you kick back on your couch with your favourite Netflix show.)

Maryellen Rose George

Brother PT-P750W

It’s useful for office tasks as well as pragmatic labelling of equipment and storage – just don’t get too excited and label everything in sight!

Cathy Giles

Brother MFC-L8900CDW

The Brother MFC-L8900CDW is an absolute stand out. I struggle to fault it.

Luke Hill

MSI GT75 TITAN

I need power and lots of it. As a Front End Web developer anything less just won’t cut it which is why the MSI GT75 is an outstanding laptop for me. It’s a sleek and futuristic looking, high quality, beast that has a touch of sci-fi flare about it.

Emily Tyson

MSI GE63 Raider

If you’re looking to invest in your next work horse laptop for work or home use, you can’t go wrong with the MSI GE63.

Featured Content

Product Launch Showcase

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?