NASA: Robotic arm key to finding life on Mars

Seven-and-a-half foot long arm will dig up Martian ice and dust on the northern pole of the red planet

A robotic arm on NASA's Phoenix spacecraft, which landed on Mars Sunday night, is the key to discovering whether the planet can support life.

The seven-and-a-half foot long arm has an attached scoop and drill bit that will dig up Martian ice and dust on the northern pole of the planet, according to Matthew Robinson, Robotic Arm Flight Software Engineer with the Jet Propulsion Laboratory. The collected material will be analyzed onboard the Mars Lander and the results sent back to Earth.

"The robotic arm is basically the key to this mission," said Robinson. "None of it is any good if you don't have a robotic arm to bring in samples. We'd be able to get pictures but what excites me is acquiring a sample and processing it, because that gives us a whole new set of knowledge. We're not looking for life itself. We're looking for the elements that support life. We couldn't do it without the arm."

The robotic arm, which weighs 20 to 30 pounds, has four joints. One is an azimuth joint that allows the arm to rotate around the base. Another is an elevation joint that enables the arm to be raised and lowered. The third is a double-jointed elbow and the 3 to 4-inch-wide scoop is attached to the last joint.

During the spacecraft's takeoff and flight through space, the arm was restrained by a series of latches. The robot had to endure several G forces of acceleration during akeoff, hurtling through space at thousands of miles an hour. Then it endured the heat and turbulence of touching down on the Martian surface. Robinson noted that out of 11 missions to Mars, only six spacecraft have successfully landed on the surface.

"The robotic arm was designed to be able to take the types of vibrations and G forces expected, but even still you're concerned," said Robinson. "You work with it so much, it feels like a child. You know you've done your best and it can handle it, but you're still anxious about your baby."

The Mars Lander is on a one-way mission, and is expected to gather and analyze samples for three months. After that, Robinson explained that the planet's temperature will drop well below the current safe range of minus 170 degrees Fahrenheit to 32 degrees Fahrenheit, causing the Lander to freeze up and stop working.

Until that point, earthbound software programmers like Robinson will send daily code feeds to Mars to guide the robotic arm as it gathers samples. Robinson explained that they developed their own software program using C code. Every day they write, test and beam new code sequences to the Mars Lander to run the robotic arm. They send the code from ground-based radar dishes to two of the three orbiters circling Mars. From there, the code is beamed down to the spacecraft on the surface.

The whole sequence takes about 20 minutes, according to Robinson. Then 12 to 16 hours later, the Mars Lander sends a report on its efforts back to earth.

As of Thursday morning, the ground team had started uploading software for a third day. The first day's code was programmed simply to check the temperature on the Martian surface. Then the second day, the code had the Lander remove the clamps from the robotic arm so it could unstow the hardware.

Robinson noted that two Viking Landers sent to Mars in the 1970s the used robotic arms, though they didn't have nearly as much freedom of movement as today's arm. Then in 2000, NASA sent up the MER Rover, which had a robotic arm that used a microscope for close ups of surface material but no scoop or analysis capabilities.

Last March, the space shuttle Endeavour launched to take the pieces of a 3,400 pound, 12-foot-tall robot with a 30-foot wingspan to the International Space Station. The US$200 million robot -- Dextre -- is expected to take on most of the maintenance jobs required outside of the space station, cutting back on the number of dangerous space walks the astronauts must make.

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Sharon Gaudin

Show Comments



Victorinox Werks Professional Executive 17 Laptop Case

Learn more >



Back To Business Guide

Click for more ›

Brand Post

Most Popular Reviews

Latest Articles


PCW Evaluation Team

Louise Coady

Brother MFC-L9570CDW Multifunction Printer

The printer was convenient, produced clear and vibrant images and was very easy to use

Edwina Hargreaves

WD My Cloud Home

I would recommend this device for families and small businesses who want one safe place to store all their important digital content and a way to easily share it with friends, family, business partners, or customers.

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?