Nanotube chip could store data for a billion years

Ultra-dense memory should work with today's silicon processing

Researchers have demonstrated a form of archive memory using carbon nanotubes that can theoretically store a trillion bits of data per square inch for a billion years.

The technology could easily be incorporated into today's silicon processing systems and it could be available in the next two years, a lead researcher said.

The scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California said the new technology can potentially pack thousands of times more data into one square inch of space than today's chips.

"We've developed a new mechanism for digital memory storage that consists of a crystalline iron nanoparticle shuttle enclosed within the hollow of a multiwalled carbon nanotube," said physicist Alex Zettl, who led this research.

Zettl, who was lead author of the paper published online by Nano Letters entitled " Nanoscale Reversible Mass Transport for Archival Memory," is perhaps best known for his work on creating the world's smallest radioin 2007, which is one ten-thousandth the width of a human hair.

Zettl said this latest nanotube breakthrough uses an iron nanoparticle, approximately 1/50,000th the width of a human hair, that in the presence of a low voltage electrical current can be shuttled back and forth inside a hollow carbon nanotube with remarkable precision.

The shuttle's position inside the tube can be read out directly via a simple measurement of electrical resistance, allowing the shuttle to function as a nonvolatile memory element with potentially hundreds of binary memory states.

"The shuttle memory has application for archival data storage with information density as high as one trillion bits per square inch and thermodynamic stability in excess of one billion years," Zettl said in a statement. "Furthermore, as the system is naturally hermetically sealed, it provides its own protection against environmental contamination."

Zettl said the low-voltage electrical write/read capabilities of the memory element in the electromechanical device allows for large-scale integration and should make for easy incorporation into today's silicon processing systems.

Zettl believes the technology could be on the market within the next two years.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags storagenanotechnology

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.
Lucas Mearian

Lucas Mearian

Computerworld
Show Comments

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Jack Jeffries

MSI GS75

As the Maserati or BMW of laptops, it would fit perfectly in the hands of a professional needing firepower under the hood, sophistication and class on the surface, and gaming prowess (sports mode if you will) in between.

Taylor Carr

MSI PS63

The MSI PS63 is an amazing laptop and I would definitely consider buying one in the future.

Christopher Low

Brother RJ-4230B

This small mobile printer is exactly what I need for invoicing and other jobs such as sending fellow tradesman details or step-by-step instructions that I can easily print off from my phone or the Web.

Featured Content

Product Launch Showcase

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?