Prototype security software blocks DDoS attacks

Security researchers show lightweight, host-based access-control scheme that dumps attack packets without overwhelming memory, CPU

Researchers have come up with host-based security software that blocks distributed denial-of-service attacks without swamping the memory and CPU of the host machines.The filtering, called identity-based privacy-protected access control (IPCAF), can also prevent session hijacking, dictionary attacks and man-in-the-middle attacks, say researchers at Auburn University in their paper, "Modeling and simulations for Identity-Based Privacy-Protected Access Control Filter (IPCAF) capability to resist massive denial of service attacks."

This new method is suggested as a replacement for IP-address filtering, which is sometimes used to block DDoS attacks but is problematic because IP addresses can be spoofed, says Chwan-Hwa "John" Wu, a professor of electrical and computer engineering at Auburn and lead author of the paper.

The method also greatly reduces the resources attacked machines have to expend in order to figure out whether requests are legitimate, he says.

Under IPCAF authorized users and the servers they try to reach receive a one-time user ID and password to authenticate to each other. After that they cooperate to generate pseudo IDs and packet-field values for each successive packet so packets get authenticated one at a time.

The receiving machines simply check the field value in each packet in order to decide whether to reject it. Only after the filter value checks out are more memory and CPU resources allocated to further process the packets, Wu says.

DDoS attacks can cripple access servers and disable resources needed by legitimate users, resulting in recent high-profile outages at Twitter and Bitbuket.

The major challenge to attacked machines is that they must commit memory and CPU resources to figuring out whether requests are legitimate. Separate appliances can sort out bad packets and proxy legitimate ones to the attacked machines, but that requires capital outlay for the devices and ongoing maintenance and management, he says.

By contrast, IPCAF runs on servers and client machines and does its work with negligible impact on performance of the machines involved, he says. For instance, the CPU on a machine running IPCAF and processing legitimate requests during testing was 10.21 per cent. That rose to 11.78 per cent when the same machine was under attack, Wu says.

He says machines using Pentium-class processors can filter packets in 6 nanosec using IPCAF, whereas the same machines would take a few milliseconds to make the same decision using public key infrastructure. That's about a million times slower with PKI. The significance is that the machines can get attack packets out of the way quickly before they start backing up and degrading response times to the point that users notice, Wu says.

To conserve processing power, IPCAF employs a lightweight hashing method -- hash-based message authentication code (HMAC) -- to generate the filter value it will use to authenticate each successive packet.

He says during lab tests, when a 10Gbps link to a server was filled with legitimate traffic and then with attack packets, network latency increased by 30 nanosec. "For humans, there is no difference," he says. Users don't sense the attack is underway, he says, and it remains possible for network security teams to trace the command and control center behind attacks.

Wu says the goal of the research is to create a commercial version of the software for use in business networks, but was uncertain when that might happen. He and his colleagues are still working on how their software might trace the source of attacks.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags ddos

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.
Tim Greene

Tim Greene

Network World
Show Comments

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Jack Jeffries

MSI GS75

As the Maserati or BMW of laptops, it would fit perfectly in the hands of a professional needing firepower under the hood, sophistication and class on the surface, and gaming prowess (sports mode if you will) in between.

Taylor Carr

MSI PS63

The MSI PS63 is an amazing laptop and I would definitely consider buying one in the future.

Christopher Low

Brother RJ-4230B

This small mobile printer is exactly what I need for invoicing and other jobs such as sending fellow tradesman details or step-by-step instructions that I can easily print off from my phone or the Web.

Featured Content

Product Launch Showcase

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?