Dual-core smartphones on the horizon

Smartphones with dual-core Arm processors could add faster processing, video capabilities

Smartphones are on the verge of becoming more powerful, with chip makers readying dual-core chips that could accelerate multimedia and application performance on handheld devices.

Most smartphones are only capable of 720p video and come with processors touching speeds of around 1GHz, but users are demanding more performance, analysts said. A new generation of dual-core processors could allow users to watch full 1080p high-definition video and run more demanding applications.

Phone makers haven't officially announced plans to put dual-core chips in smartphones, but the chip makers are getting ready. Qualcomm has already shipped its first dual-core processor, the MSM8660, and is due to start sampling a faster dual-core chip, the QSD8672, later this year. Texas Instruments is scheduled to ship a dual-core chip, the OMAP4430, later this year, and it could reach devices early next year.

People are running demanding applications on smartphones that require more computational power, said Nathan Brookwood, principal analyst of Insight 64. For example, Apple's FaceTime video-conferencing application demands a lot of performance with multiple video streams and picture-in-picture capabilities. As video images move to higher resolutions and video-calling capabilities reach more smartphones, devices will need faster processors.

Breaking up application execution over two processing cores will allow users to do more with smartphones while preserving battery life, Brookwood said. TI and Qualcomm said smartphones with their new dual-core chips will be able to render Web pages and video faster, and play back 1080p high-definition video.

"This benefit allows for far more concurrency in applications. You've got an additional processor to handle background tasks, running multiple applications or updating multiple web pages simultaneously," said Richard Tolbert , director of product management for the OMAP smart phone business at TI.

An alternative would be to speed up a single-core processor by ratcheting up the clock speed, which could lead to excess heat dissipation and battery drain, Brookwood said. Adding an additional core would be a more power-efficient way to boost chip performance.

"[Processors] typically require more power ... as you increase clock speed. If you keep the frequency lower, you can save enough power to drive two cores at a lower frequency," Brookwood said.

However, a big challenge is to make multiple cores as power efficient as possible without asking the user to pay a penalty in terms of battery consumption, Tolbert said.

"Dual-core doesn't necessarily bring power reduction since you are exercising more silicon area with two processors versus one processor," Tolbert said.

To tackle that issue, TI and Qualcomm are bringing unique power management capabilities to manage processing over multiple cores. The companies are introducing features to dynamically switch cores on and off. For example, depending on the task, one CPU core will be able operate at full speed, while the other could be clocked down to idle.

Smartphones are treading the path of laptops and desktops, which already include multicore chips. The first multicore processors were implemented in IBM's Power4 server chips, but the trend trickled down to PCs when chip makers like Intel and Advanced Micro Devices reverted to adding cores to microprocessors.

But the challenges of developing multicore processors are more taxing on smartphone chip makers because of the smaller device sizes.

"The size, power and thermal constraints put in place by the end equipment are more relaxed in a PC than in a smartphone," Tolbert said.

TI's OMAP4430 is based on Arm's Cortex-A9 processor design and will run at a speed of around 1GHz. The chip is in the final stages of development and qualification, the company said.

Qualcomm said devices with the MSM8660, which runs at 1.2GHz, are expected by the first quarter of next year, and potentially as early as the end of this year. The faster QSD8672, which runs at 1.5GHz, will start sampling by the end of 2010 and reach devices next year.

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection

Tags Mobile handsetsconsumer electronicssmartphonesPhonesqualcommdual coreprocessors

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Agam Shah

IDG News Service
Show Comments

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

George Khoury

Sharp PN-40TC1 Huddle Board

The biggest perks for me would be that it comes with easy to use and comprehensive programs that make the collaboration process a whole lot more intuitive and organic

David Coyle

Brother PocketJet PJ-773 A4 Portable Thermal Printer

I rate the printer as a 5 out of 5 stars as it has been able to fit seamlessly into my busy and mobile lifestyle.

Kurt Hegetschweiler

Brother PocketJet PJ-773 A4 Portable Thermal Printer

It’s perfect for mobile workers. Just take it out — it’s small enough to sit anywhere — turn it on, load a sheet of paper, and start printing.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?