IBM brings brain power to experimental chips

IBM makes chips based on the structure and operation of the human brain

IBM has created prototype chips that could mimic brain-like functionality, which the company said is an "unprecedented" step forward in creating intelligent computers that collect, process and understand data quickly.

The prototype chips will give mind-like abilities for computers to make decisions by collating and analyzing immense amounts of data, similar to humans gathering and understanding a series of events, said Dharmendra Modha, project leader for IBM Research. The experimental chips, modeled around neural systems, mimics the brain's structure and operation through silicon circuitry and advanced algorithms.

IBM hopes reverse-engineering the brain into a chip could forge computers that are highly parallel, event-driven and passive on power consumption, Modha said. The machines will be a sharp departure from modern computers, which have scaling limitations and require set programming by humans to generate results.

"In today's computers, there are some key fundamental limitations that are projected to come to an end," Modha said. "The ever-increasing clock rates are unsustainable. In contrast, the brain is an ultimate computer."

Like the brain, IBM's prototype chips can dynamically rewire to sense, understand and act on information fed via sight, hearing, taste, smell and touch, or through other sources such as weather and water-supply monitors. The chips will help discover patterns based on probabilities and associations, all while rivaling the brain's compact size and low power usage, Modha said.

"We now have the seeds of a new architecture that can allow us to mine the boundary between the physical and the digital world in an ever more efficient way," Modha said.

The chips could help manage water supplies through real-time data analysis and pattern recognition, Modha said. Computers could generate tsunami warnings through a network of sensors monitoring temperature, pressure, wave height and ocean tide. The chips' cognitive features could help grocers identify bad produce and give smartphones features to better interact with the environment.

IBM and its research partners have already generated some results from the project, such as walking through a maze, playing a game of Pong, or recognizing patterns in data. The researchers are gunning for better results that include image recognition in videos.

IBM has made two prototype chips using the 45-nanometer manufacturing process. Based on traditional circuitry, the chips are organized in a way to recreate the phenomena between spiking neurons and synapses in brains with the help of integrated memory, computation and communication features. The chips use the same basic elements of transistors in microprocessors today, but are wired differently, Modha said.

The company has built individual "digital neurons" in the chips as low-power processing units, and synapses to establish connections between neurons. The neurons and synapses are organized in cross-bar arrays and are supported by a communications infrastructure for neurons to exchange data in real time. The neurons remember recent activities, while the synapses remember the neurons they are associated with.

The chips contain 256 "digital neurons" running at slow speeds of 10MHz that are constantly blasting information to each other. One core contains 262,144 programmable synapses, while the other core contains 65,536 "learning" synapses. Like in the brain, the synapse establishes connections between digital neurons, and the more often a signal is sent to a synapse, the stronger the synapse gets.

It is possible to equip modern computers with many low-power processing units for such functionality, Modha said. But the buses separating the processing units could be a bottleneck, and as the data piles up, the cores need to operate at faster clock rates.

"Functionality of the chip can be simulated on today's computers. But since today's computers are unlike the brain, you pay ... magnitudes more on power and volume," Modha said.

The prototype chips incorporate a simplified model of the human brain, which has billions of neurons and trillions of synapses. IBM said the chips are the foundation of what could eventually be a "mammalian-scale system," which will include 10 billion neurons and 100 trillion synapses with the power consumption and size that rivals the human brain. Modha could not provide a time frame within which the computer would be made, but said results from the current research could change the way computers are built.

Brains are also able to think "outside the box" to conduct activity, so how close do the chips actually come in terms of intelligence? Modha said the chip is intended to mimic brain-like functionality, and that digital neurons will be able to pull a wider range of stimuli and environments and respond more robustly to a wide range of situations.

IBM developed the chips along with partners as part of a multiyear research initiative called Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE), which focuses on cognitive computing. IBM and its partners are bringing together the neuroscience, nanotechnology and supercomputing fields to create the new computing platform.

IBM's research partners include Columbia University; Cornell University; University of California, Merced; and University of Wisconsin, Madison. IBM and its university partners also announced on Thursday that they received US$21 million in additional funding for the project from DARPA (Defense Advanced Research Projects Agency), an agency that is part of the U.S. Department of Defense.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags processorsIBMpopular scienceComponents

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Agam Shah

IDG News Service
Show Comments

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Emily Tyson

MSI GE63 Raider

If you’re looking to invest in your next work horse laptop for work or home use, you can’t go wrong with the MSI GE63.

Laura Johnston

MSI GS65 Stealth Thin

If you can afford the price tag, it is well worth the money. It out performs any other laptop I have tried for gaming, and the transportable design and incredible display also make it ideal for work.

Andrew Teoh

Brother MFC-L9570CDW Multifunction Printer

Touch screen visibility and operation was great and easy to navigate. Each menu and sub-menu was in an understandable order and category

Louise Coady

Brother MFC-L9570CDW Multifunction Printer

The printer was convenient, produced clear and vibrant images and was very easy to use

Edwina Hargreaves

WD My Cloud Home

I would recommend this device for families and small businesses who want one safe place to store all their important digital content and a way to easily share it with friends, family, business partners, or customers.

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?