Stanford researchers develop first computer using only carbon nanotube transistors

Carbon nanotube transistors are seen as a successor to silicon transistors, as silicon is expected to meet its physical limits

Researchers at Stanford University have demonstrated the first functional computer built using only carbon nanotube transistors, according to an article published Wednesday on the cover of scientific journal Nature.

Scientists have been experimenting with transistors based on carbon nanotubes or CNTs as successors to silicon transistors, as silicon is expected to meet its physical limits in delivering the increasingly smaller transistors required for higher performance in smaller and cheaper computing devices that are less power-consuming. Digital circuits based on the long chains of carbon atoms are expected to be more energy-efficient than silicon transistors.

The rudimentary CNT computer, developed by the researchers at Stanford, is said to run a simple operating system that is capable of multitasking, according to a synopsis of the article.

Made of 178 transistors, each containing between 10 and 200 carbon nanotubes, the computer can do four tasks summarized as instruction fetch, data fetch, arithmetic operation and write-back, and run two different programs concurrently.

As a demonstration, the researchers performed counting and integer-sorting simultaneously, according to the synopsis, besides implementing 20 different instructions from the MIPS instruction set "to demonstrate the generality of our CNT computer," according to the article by Max Shulaker and other doctoral students in electrical engineering. The research was led by Stanford professors Subhasish Mitra and H.S. Philip Wong.

"People have been talking about a new era of carbon nanotube electronics moving beyond silicon," said Mitra, an electrical engineer and computer scientist in a press release issued by Stanford University. "But there have been few demonstrations of complete digital systems using this exciting technology. Here is the proof."

Carbon nanotubes still have imperfections. They do not, for example, always grow in parallel lines, which has led researchers to devise techniques to grow 99.5 percent of CNTs in straight lines, according to the press release. But at billions of nanotubes on a chip, even a small misalignment of the tubes can cause errors. A fraction of the CNTs also behave like metallic wires that always conduct electricity, instead of acting like semiconductors that can be switched off.

The researchers describe a two-pronged approach called an "imperfection-immune design". They passed electricity through the circuits, after switching off the good CNTs, to burn up the metallic nanotubes, and also developed an algorithm to work around the misaligned nanotubes in a circuit.

The basic computer was limited to 178 transistors, which was the result of the researchers using the university's chip-making facilities rather than an industrial fabrication process, according to the press release.

Other researchers are also working on CNTs as they worry about silicon hitting its physical limits. IBM said last October its scientists had developed a way to place over 10,000 transistors made from the nano-sized tubes of carbon on a single chip, up from a few hundred carbon nanotube devices at a time previously possible. This density was, however, far below the density of commercial silicon-based chips, but the company said the breakthrough opened up the path for commercial fabrication of "dramatically smaller, faster and more powerful computer chips."

Join the PC World newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection

Tags popular scienceComponentsprocessorsStanford University

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

John Ribeiro

IDG News Service
Show Comments

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Matthew Stivala

HP OfficeJet 250 Mobile Printer

The HP OfficeJet 250 Mobile Printer is a great device that fits perfectly into my fast paced and mobile lifestyle. My first impression of the printer itself was how incredibly compact and sleek the device was.

Armand Abogado

HP OfficeJet 250 Mobile Printer

Wireless printing from my iPhone was also a handy feature, the whole experience was quick and seamless with no setup requirements - accessed through the default iOS printing menu options.

Azadeh Williams

HP OfficeJet Pro 8730

A smarter way to print for busy small business owners, combining speedy printing with scanning and copying, making it easier to produce high quality documents and images at a touch of a button.

Andrew Grant

HP OfficeJet Pro 8730

I've had a multifunction printer in the office going on 10 years now. It was a neat bit of kit back in the day -- print, copy, scan, fax -- when printing over WiFi felt a bit like magic. It’s seen better days though and an upgrade’s well overdue. This HP OfficeJet Pro 8730 looks like it ticks all the same boxes: print, copy, scan, and fax. (Really? Does anyone fax anything any more? I guess it's good to know the facility’s there, just in case.) Printing over WiFi is more-or- less standard these days.

Ed Dawson

HP OfficeJet Pro 8730

As a freelance writer who is always on the go, I like my technology to be both efficient and effective so I can do my job well. The HP OfficeJet Pro 8730 Inkjet Printer ticks all the boxes in terms of form factor, performance and user interface.

Michael Hargreaves

Windows 10 for Business / Dell XPS 13

I’d happily recommend this touchscreen laptop and Windows 10 as a great way to get serious work done at a desk or on the road.

Featured Content

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?