MIT tackled Earth's atmosphere to give the moon broadband

Researchers will give more details next month on an experimental laser link

An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon and preparing to fire its maneuvering thrusters to maintain a safe orbital altitude.

An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon and preparing to fire its maneuvering thrusters to maintain a safe orbital altitude.

Four transmitting telescopes in the New Mexico desert, each just 6 inches in diameter, can give a satellite orbiting the moon faster Internet access than many U.S. homes get.

The telescopes form the earthbound end of an experimental laser link to demonstrate faster communication with spacecraft and possible future bases on the moon and Mars. Researchers from the Massachusetts Institute of Technology will give details about the system and its performance next month at a conference of The Optical Society.

The Lunar Laser Communication Demonstration (LLCD) kicked off last September with the launch of NASA's LADEE (Lunar Atmosphere and Dust Environment Explorer), a research satellite now orbiting the moon. NASA built a laser communications module into LADEE for use in the high-speed wireless experiment.

LLCD has already proved itself, transmitting data from LADEE to Earth at 622Mbps (bits per second) and in the other direction at 19.44Mbps, according to MIT. It beat the fastest-ever radio communication to the moon by a factor of 4,800.

NASA hopes lasers can speed up communication with missions in space, which use radio to talk to Earth now, and let them send back more data. Laser equipment also weighs less than radio gear, a critical factor given the high cost of lifting any object into space.

The project uses transmitting telescopes at White Sands, New Mexico, to send data as pulses of invisible infrared light. The hard part of reaching the moon by laser is getting through Earth's atmosphere, which can bend light and cause it to fade or drop out on the way to the receiver.

One way the researchers got around that was by using the four separate telescopes. Each sends its beam through a different column of air, where the light-bending effects of the atmosphere are slightly different. That increases the chance that at least one of the beams will reach the receiver on the LADEE.

Test results have been promising, according to MIT, with the 384,633-kilometer optical link providing error-free performance in both darkness and bright sunlight, through partly transparent thin clouds, and through atmospheric turbulence that affected signal power.

One reason it works is that there's plenty of signal power to spare. The transmission power from the Earth antennas totals 40 watts, and less than a billionth of a watt is received on the LADEE. But that's still 10 times the signal needed to communicate without errors, according to MIT. On the craft, a smaller telescope collects the light and focuses it into an optical fiber. After the signal is amplified, it's converted to electrical pulses and into data.

Stephen Lawson covers mobile, storage and networking technologies for The IDG News Service. Follow Stephen on Twitter at @sdlawsonmedia. Stephen's e-mail address is stephen_lawson@idg.com

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection

Tags popular sciencetelecommunicationNASANetworkingMassachusetts Institute of Technologyinternet

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Stephen Lawson

IDG News Service
Show Comments

Cool Tech

SanDisk MicroSDXC™ for Nintendo® Switch™

Learn more >

Breitling Superocean Heritage Chronographe 44

Learn more >

Toys for Boys

Family Friendly

Panasonic 4K UHD Blu-Ray Player and Full HD Recorder with Netflix - UBT1GL-K

Learn more >

Stocking Stuffer

Razer DeathAdder Expert Ergonomic Gaming Mouse

Learn more >

Christmas Gift Guide

Click for more ›

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

George Khoury

Sharp PN-40TC1 Huddle Board

The biggest perks for me would be that it comes with easy to use and comprehensive programs that make the collaboration process a whole lot more intuitive and organic

David Coyle

Brother PocketJet PJ-773 A4 Portable Thermal Printer

I rate the printer as a 5 out of 5 stars as it has been able to fit seamlessly into my busy and mobile lifestyle.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?