IBM triples transistor performance with germanium

IBM has successfully demonstrated a new technique for improving transistor performance that will help the company build smaller, more powerful chips in the next decade, company researchers said Monday.

The company has discovered a way to use germanium to improve the flow of electrons through its transistors, said Huiling Shang, a research staff member at IBM. A layer of strained germanium was applied directly to the channel of the transistor, or the area through which electrical current passes, in order to open up additional space for electrons within the channel.

Transistors built with strained germanium should have three times the performance of conventional transistors, Shang said.

Germanium has been used in smaller doses by several companies, including IBM, in an existing manufacturing technique called strained silicon. In this technique, a mixture of germanium and silicon is placed next to a layer of pure silicon, which causes the silicon atoms to stretch in order to align themselves with the silicon germanium atoms. This opens a wider path that allows more electrons to flow through the circuit.

Researchers have long known that germanium is a better conductor of electricity than silicon, but they had not figured out how to build higher concentrations of germanium into chips using conventional techniques, Shang said. IBM has accomplished this, and has also figured out how to strain the germanium layer in order to further improve performance, she said.

Germanium, which is a by-product of zinc ore processing, is a hard element with the same crystal structure as a diamond. It is a semiconductor with electrical properties between those produced by a metal and an insulator. Its use as a transistor was key in the advancement of solid-state electronics.

IBM will present additional details about how it accomplished its feat with germanium at the 2004 International Electron Devices Meeting (IEDM) in San Francisco next week, Shang said.

The technique gives chipmakers another resource to improve performance as shrinking the transistor becomes more difficult, Shang said. The technique is still in the research stage, but IBM believes it could be used on the 32 nanometer process generation, currently scheduled for introduction around 2013.

Chip designers have improved performance for several years by making smaller and smaller transistors. Smaller transistors are generally faster, and more of them can fit on a chip. However, transistors have now become so small that electrical current can leak out of the transistors as heat, a problem that is quite evident at the current 90 nanometer process generation and is expected to get worse at the 65 nanometer process generation scheduled for introduction in 2005 and 2006. The number attached to the process generation refers to the width of the smallest circuit line within a chip.

Other chip-making techniques that go beyond simply shrinking the transistor are under investigation at companies such as IBM, Intel Corp., and others. For example, Intel plans to integrate tri-gate transistors by the end of the decade to help control current leakage.

Also on Monday, IBM claimed it had built and demonstrated the world's smallest stable SRAM (static RAM) cell. The company used advanced chip-making techniques to build the SRAM cells, which consist of six transistors. The cells are half the size of the smallest experimental cell built to date, and 10 times as small as SRAM cells available today, said Jack Hergenrother, a research staff member at IBM.

Chip companies generally build SRAM cells as test products for new manufacturing techniques or tools. SRAM is often used as cache memory, which improves the performance of a processor by storing frequently used data close to the processing unit.

The SRAM cells will also be presented next week at the IEDM meeting, Hergenrother said.

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Tom Krazit

IDG News Service
Show Comments


James Cook University - Master of Data Science Online Course

Learn more >




Back To Business Guide

Click for more ›

Brand Post

Most Popular Reviews

Latest Articles


PCW Evaluation Team

Louise Coady

Brother MFC-L9570CDW Multifunction Printer

The printer was convenient, produced clear and vibrant images and was very easy to use

Edwina Hargreaves

WD My Cloud Home

I would recommend this device for families and small businesses who want one safe place to store all their important digital content and a way to easily share it with friends, family, business partners, or customers.

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?