Google's datacentres grow too fast for normal networks, so it builds its own

Google has been developing networks for 10 years and is now sharing some details

Google has been building its own software-defined datacentre networks for 10 years because traditional gear can't handle the scale of what are essentially warehouse-sized computers.

The company hasn't said much before about that homegrown infrastructure, but one of its networking chiefs provided some details on Wednesday at Open Network Summit and in a blog post.

The current network design, which powers all of Google's datacentres, has a maximum capacity of 1.13 petabits per second. That's more than 100 times as much as the first datacentre network Google developed 10 years ago. The network is a hierarchical design with three tiers of switches, but they all use the same commodity chips. And it's not controlled by standard protocols but by software that treats all the switches as one.

Networking is critical in Google's data centers, where tasks are distributed across pools of computing and storage, said Amin Vahdat, Google Fellow and networking technical lead. The network is what lets Google make the best use of all those components. But the need for network capacity in the company's datacentre has grown so fast that conventional routers and switches can't keep up.

"The amount of bandwidth that we have to deliver to our servers is outpacing even Moore's Law," Vahdat said. Over the past six years, it's grown by a factor of 50. In addition to keeping up with computing power, the networks will need ever higher performance to take advantage of fast storage technologies using flash and non-volatile memory, he said.

Back when Google was using traditional gear from vendors, the size of the network was defined by the biggest router the company could buy. And when a bigger one came along, the network had to be rebuilt, Vahdat said. Finally, that didn't work.

"We could not buy, for any price, a datacentre network that would meet the requirements of our distributed systems," Vahdat said. Managing 1,000 individual network boxes made Google's operations more complex, and replacing a whole datacentre's network was too disruptive.

So the company started building its own networks using generic hardware, centrally controlled by software. It used a so-called Clos topology, a mesh architecture with multiple paths between devices, and equipment built with merchant silicon, the kinds of chips that generic white-box vendors use. The software stack that controls it is Google's own but works through the open-source OpenFlow protocol.

Google started with a project called Firehose 1.0, which it couldn't implement in production but learned from, Vahdat said. At the time, there were no good protocols with multiple paths between destinations and no good open-source networking stacks at first, so Google developed its own. The company is now using a fifth-generation homegrown network, called Jupiter, with 40-Gigabit Ethernet connections and a hierarchy of top-of-rack, aggregation and spine switches.

The design lets Google upgrade its networks without disrupting a datacentre's operation, Vahdat said. "I have to be constantly refreshing my infrastructure, upgrading the network, having the old live with the new."

Google is now opening up the network technology it took a decade to develop so other developers can use it.

"What we're really hoping for is that the next great service can leverage this infrastructure and the networking that goes along with it, without having to invent it," Vahdat said.

Stephen Lawson covers mobile, storage and networking technologies for The IDG News Service. Follow Stephen on Twitter at @sdlawsonmedia. Stephen's e-mail address is stephen_lawson@idg.com

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags internetGoogleNetworkingsearch engines

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Stephen Lawson

IDG News Service
Show Comments

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Emily Tyson

MSI GE63 Raider

If you’re looking to invest in your next work horse laptop for work or home use, you can’t go wrong with the MSI GE63.

Laura Johnston

MSI GS65 Stealth Thin

If you can afford the price tag, it is well worth the money. It out performs any other laptop I have tried for gaming, and the transportable design and incredible display also make it ideal for work.

Andrew Teoh

Brother MFC-L9570CDW Multifunction Printer

Touch screen visibility and operation was great and easy to navigate. Each menu and sub-menu was in an understandable order and category

Louise Coady

Brother MFC-L9570CDW Multifunction Printer

The printer was convenient, produced clear and vibrant images and was very easy to use

Edwina Hargreaves

WD My Cloud Home

I would recommend this device for families and small businesses who want one safe place to store all their important digital content and a way to easily share it with friends, family, business partners, or customers.

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?