Quantum computing, here we come: A qubit data bus may soon be possible

A research breakthrough could put much faster computing within reach

Transporting information from one place to another is a key part of any computing platform, and now researchers have figured out a way to make it possible in the quantum world.

To prove their point, they demonstrated what's known as perfect state transfer on a photonic qubit that's entangled with another qubit at a different location.

In traditional computing, numbers are represented by either 0s or 1s. Quantum computing relies on atomic-scale quantum bits, or “qubits,” that can be simultaneously 0 and 1 -- a state known as superposition. Quantum bits can also become "entangled" so that they are dependent on one another even across distances.

Today's microprocessors use data buses to route bits of information to and from memory. Transferring quantum information is trickier, because quantum states are so fragile -- try to move a qubit, and the quantum state may change.

To test out their approach, the researchers in this study turned to particles of light. Hailing from RMIT University in Australia, Italy's National Research Council, and China's South University of Science and Technology, the scientists used a technique by which quantum information is encoded in such particles, also known as photons.

Using an experimental setup with multiple "waveguide" tubes, they tried to relocate the data among locations while achieving perfect state transfer, preserving the delicate quantum state of entanglement. In their tests, the researchers were able to perform the procedure while preserving the encoded quantum state with an average fidelity of 97.1 percent.

Ultimately, the discovery could pave the way for a quantum data bus and bring quantum computing closer to reality, they said. Quantum computers could have much higher performance than today's systems.

"Quantum computers promise to solve vital tasks that are currently unmanageable on today's standard computers," said Alberto Peruzzo, director of RMIT's Quantum Photonics Laboratory. "It could make the critical difference for discovering new drugs, developing a perfectly secure quantum Internet and even improving facial recognition.''

The research was published Monday in Nature Communications.

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Katherine Noyes

IDG News Service
Show Comments

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

George Khoury

Sharp PN-40TC1 Huddle Board

The biggest perks for me would be that it comes with easy to use and comprehensive programs that make the collaboration process a whole lot more intuitive and organic

David Coyle

Brother PocketJet PJ-773 A4 Portable Thermal Printer

I rate the printer as a 5 out of 5 stars as it has been able to fit seamlessly into my busy and mobile lifestyle.

Kurt Hegetschweiler

Brother PocketJet PJ-773 A4 Portable Thermal Printer

It’s perfect for mobile workers. Just take it out — it’s small enough to sit anywhere — turn it on, load a sheet of paper, and start printing.

Featured Content

Product Launch Showcase

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?